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Dispersive wave propagation in disordered flexible fibers enhances stress attenuation
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We experimentally and computationally analyze impact-shock-induced stress wave propagation in packings
of disordered flexible fibers. We find that dispersive wave propagation, associated with large stress attenuation,
occurs much more prevalently in systems with larger fiber aspect ratios and moderate fiber flexibility. We
trace these features to the microstructural properties of fiber contact chains and the energy-trapping abilities
of deformable fibers. These findings provide insights into physics of the shock-impacted flexible fiber packings
and open the way toward an improved granular-material-based damping technology.
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I. INTRODUCTION

When a granular medium is hit by a shock, stress waves
are generated and propagate within it through the network of
interparticle contacts. Due to significant energy dissipation
via the inelastic and sliding frictional contacts in this dy-
namic process, granular materials have been effectively used
as dampers and protectors [1–10]. For a better understanding
of the underlying granular physics, extensive studies have
been performed on the wave propagation in granular media.
The simplest such systems are one-dimensional (1D) granular
chains composed of spheres [2], cylinders [3,4], and more
complex particles [5–7]. Solitary waves are usually observed
in the chains of monodisperse spherical particles [8]. If the
spheres of different diameters or elastic moduli are introduced
to the chains, wave reflection and decomposition can occur
[9,10]. In the chains of identical cylindrical rods, nonlinear
features of contacts and rod vibration lead to more localized
solitary waves and stronger energy dissipation compared to
the chains of spheres [11,12].

In two-dimensional (2D) and three-dimensional (3D)
granular systems, richer phenomena of wave propagation phe-
nomena are observed and show a strong dependence on the
spatial arrangements and properties of particles [13–16]. Even
a slight variation in packing structure, such as the presence
of small gaps due to particle size tolerance in 2D-ordered
granular media, can significantly influence wave speeds and
peak forces, causing scatter in experimental results [17].
Varying number ratio or stiffness ratio of two granular compo-
nents can produce diverse wave speeds [18] and wave fronts
[19] by redirecting energy transmission within the system,
demonstrating a wave-control approach through manipulating
composition and topological structure of the granular system.

*Contact author: yguo@zju.edu.cn

Compared to systems of rigid spheres and short cylinders,
stress wave propagation is much less understood in 3D as-
semblies of disordered flexible fibers, which have practical
applications in lightweight building materials, proppant in oil
recovery, and colloidal and granular polymers [20,21]. The
fiber systems have complex microstructures with interlock-
ing particle contacts and large particle deformation [20–22],
which substantially complicate energy transmission and thus
alter the ability of stress attenuation.

In this paper, we find, in experiments and numerical simu-
lations of shock impacts on assemblies of disordered flexible
fibers, that the occurrence of solitary or dispersive wave prop-
agation depends on fiber aspect ratio (AR) and flexibility.
Stress wave attenuation is remarkably enhanced by dispersive
pattern of wave propagation, in which energy trapping due to
fiber deformation plays an important role. Thus, the extent
of the stress attenuation and wave speed can be modulated
by adjusting fiber properties, providing a wave-control and
damping technology based on the flexible fibers.

II. METHODOLOGY

A. Experimental setup

In our experiments, as shown in Fig. 1(a), fibers are
randomly packed in a cylindrical container and sandwiched
between two load cells on which force sensors are installed.
A load cell is composed of two acrylic plates, between which a
piezoelectric dynamic force sensor is sandwiched. The sensor
is secured to the plates using adhesive tape. To prevent the
effect of plate deformation on the force measurements, the
plates have a large thickness of 10 mm. Four sets of bolts and
nuts are used to hold the two plates and the sensor together
and apply a precompression force. A steel ball of 4 cm in
diameter falls under gravity and impacts the upper load cell at
a velocity of 0.4 m/s, generating a shock wave that propagates
through the fiber bed from the top to the bottom. The time
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FIG. 1. (a) Schematic plot of experimental setup of a free-falling
steel ball impacting a bed of disordered fibers. The inset shows
the power law correlation of packing density φ and fiber aspect
ratio ARfor the stiff fibers of Eb = 7.9 × 109 Pa in the cylindrical
container. Snapshot, x-ray CT image, and numerical model of the
packed fibers with fiber aspect ratios of (b) AR = 3 and (c) AR = 24.

evolution of the forces on the upper and lower load cells is
automatically recorded by a computer system. To accurately
determine time evolution of input and output forces and cal-
culate wave speeds, signals from the upper and lower sensors
are synchronized using a signal processor with a sampling
frequency of 128 kHz.

The fibers of various ARs are made of photopolymer resin
and fabricated using a 3D printing machine. The total solid
volume of the fibers packed in the cylindrical container re-
mains the same for various fiber ARs and flexibility. All the
fibers have the same diameter, and the number of fibers varies
according to the different ARs. In the present experimental
impact tests, as shown in the inset of Fig. 1(a), packing density
φ and fiber aspect ratio AR for the disordered stiff fibers
of Eb = 7.9 × 109 Pa (made of photopolymer resin) in the
cylindrical container follow a power law relationship, which
is consistent with the findings of Ref. [20].

The morphology of the fiber beds resolved to single-fiber
scale is obtained using a 320 kV x-ray computed tomography
(CT) in situ testing instrument [see Figs. 1(b) and 1(c)]. To
determine the position and orientation of each fiber, as shown
in Figs. 1(b) and 1(c), and to analyze the microstructural
properties of the fiber packings (e.g., contact force chains),
we process the x-ray CT images using the watershed transfor-
mation algorithm. This involves filtering, binarizing the im-
ages, and applying the watershed transformation to segment

individual fibers [23]. The process is performed using Drag-
onfly software (version 2022.02).

Utilizing the x-ray CT data, high-fidelity numerical models
of the fiber beds, which have the same morphology as the ex-
perimental setups, can be generated for numerical simulation
studies using the discrete element method (DEM).

B. Discrete element method

In the DEM simulations, a semiflexible fiber is represented
by a string of bonded spherocylinders, and stretching (com-
pression), bending, and twisting deformations of the fiber
are governed by a set of elastic constitutive laws [24,25].
The interactions between fiber-fiber, fiber-plane, and fiber-
cylindrical boundaries are modeled as normal and tangential
contact forces, described by the modified Hertz-Mindlin mod-
els [25]. Viscous dissipation of energies in the contacts
and fiber deformations is considered through contact damp-
ing and bond-damping forces in the DEM simulations [25].
Additional information about DEM theories is provided in
Appendix.

III. RESULTS AND DISCUSSION

A. Speeds and attenuation of stress waves

In the experiments, the forces exerted on the upper load
cell, referred to as the source, and the lower load cell, as re-
ceiver, are recorded as a function of time [Fig. 2(a)]. The peak
force on the receiver F p

R is remarkably smaller than that on
the source F p

S , indicating significant attenuation in force trans-
mission through the fiber bed. Such force attenuation was also
observed in a medium of rigid spheres attributed to Rayleigh
scattering and contact damping [26]. As AR increases, the
receiver force lasts for a longer time with a decrease in the
peak F p

R . In addition, a smaller force pulse on the source is
induced by postshock expansion of the fiber bed at a late
time for AR = 24. The similar force attenuation behaviors are
obtained for various ARs in the DEM simulations [Fig. 2(b)].

The time instants at which the source and receiver forces
reach 20% of the peak receiver force F p

R (i.e., 0.2F p
R ) are

written as tS and tR, respectively, as illustrated in Fig. 2(a).
We define the wave speed vw as

vw = H

tR − tS
, (1)

in which H is the distance between the upper and lower load
cells. The time instants t p

S and t p
R [Fig. 2(b)] correspond to the

peak forces on the source and receiver, respectively. Thus, the
speed of peak force vpk is defined as

vpk = H

t p
R − t p

S

. (2)

With increasing AR, the wave speed vw increases
[Fig. 2(c)], the speed of peak force vpk decreases [Fig. 2(d)],
and the attenuation coefficient, defined as α = (F p

S −F p
R )/F p

S ,
increases [Fig. 2(e)]. These trends are determined by mi-
crostructural properties of force transmission paths and
mechanism of energy propagation and dissipation, which will
be discussed later.
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FIG. 2. (a) Experimental and (b) DEM simulation results of forces exerted on the upper load cell (referred to as source) and lower load cell
(receiver) as a function of time for the fiber beds with fiber aspect ratios of AR = 3, 7, and 24. Wave speed vw , speed of peak force vpk , and
attenuation coefficient α are plotted as a function of AR in (c)–(e), respectively. Error bars represent SDs across five measurements.

B. Stress wave propagation pattens

To explore the process of stress wave propagation, the fiber
bed is equally partitioned into 20 layers in the DEM simula-
tions. Total fiber-fiber contact force Fc, total kinetic energy K ,
and total potential energy U (due to elastic deformation) of the
fibers in each layer can be calculated for a specified time in-
stant. Treating the initial quantities before the impact (F 0

c , K0,
and U 0) as the benchmarks, the corresponding incremental
contact force �Fc = Fc − F 0

c , kinetic energy �K = K − K0,
and potential energy �U = U − U 0 reflect the changes made
by the stress wave.

Spatiotemporal distributions of �Fc, �K , and �U are plot-
ted in Fig. 3, and different patterns of wave propagation are
observed for the fiber beds with different fiber aspect ratios.
For the short fibers of AR = 3, an inclined, narrow band of
�Fc is formed at early time [Fig. 3(a)], demonstrating solitary
wave propagation. The contact forces drive the movement and
deformation of the fibers. Thus, the incremental kinetic energy
�K and potential energy �U transmit in a similar manner
as �Fc [Figs. 3(d) and 3(g)]. Nevertheless, �K lasts longer
in the upper region than in the lower region of the bed [Fig.
3(d)]. The wave propagation pattern with AR = 7 [Figs. 3(b),
3(e), and 3(h)] resembles that with AR = 3 [Figs. 3(a), 3(d),
and 3(g)], except that stronger attenuation with smaller �Fc

and �K toward the bottom is obtained for AR = 7 compared
to AR = 3. It is observed that the potential energy �U for

AR = 7 is two orders larger than that for AR = 3, attributed
to the larger bending deformation of the larger AR fibers.
Thus, as AR increases, more energy is absorbed by the fiber
deformation and converted to the potential energy, preventing
the propagation of force and energy to the lower region.

Unlike the solitary waves in the short fiber beds with
AR = 3 and 7, in the beds of a much larger aspect ratio AR =
24, the stress wave propagates dispersedly with significant
contact forces �Fc lasting for a much longer duration and
remaining primarily in the upper region of the bed [Fig. 3(c)].
Consistently, the energies �K and �U are trapped in the up-
per region and hardly propagate to the bottom [Figs. 3(f) and
3(i)]. As a result, lower speeds of the peak force vpk and larger
attenuation α are obtained for the larger fiber aspect ratios
[Figs. 2(d) and 2(e)] due to the dispersive wave propagation.

C. Shortest percolation force chains

In disordered fiber systems, the microstructures and pack-
ing densities of the beds depend on the fiber properties.
It can be seen that the packing density decreases with in-
creasing AR in Fig. 1(a). Compared to the one-dimensional
ordered fiber chains [11], the disorder leads to diverse packing
structures of the elongated fibers with different fiber aspect
ratios [Figs. 1(b) and 1(c)] and therefore various microscopic
contact structures that determine the transmission of forces
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FIG.3. Spatiotemporal distributions of (a)–(c) incremental contact force �Fc, (d)–(f) incremental kinetic energy �K , and (g)–(i) incre-
mental potential energy �U for the fiber beds with fiber aspect ratios of AR = 3, 7, and 24. The present results are obtained from the DEM
simulations.

and energies within the fiber bed. Consequently, we trace
macroscopic features to microstructural properties of the fiber
contact chains. Morphology of the shortest percolation force
chain, which is the shortest path between the source and
receiver plates in the network of force chains [23,27–29],
characterizes the microstructure and connectivity of a granular
system [18] and therefore has a crucial impact on the stress
wave propagation.

We investigate the effect of force chains on the stress
wave propagation by defining a shortest percolation contact
force chain, which is the shortest path that allows the force
wave to reach the receiver plate in the shortest time duration.
The steps to determine the shortest percolation contact force
chain in a packed fiber bed are as follows: (1) Identify the first
fiber in the chain, which has its center of mass at the highest
position in the fiber bed and designate it as the current fiber of
interest. (2) Find all the neighboring fibers that are in contact
with the current fiber of interest in the chain. (3) From these
contacting fibers, select the one with the center of mass at the
lowest position and update it as the current fiber of interest.
Repeat (2) and (3) until the current fiber of interest touches
the bottom receiver plate. The shortest percolation force chain
is formed by all these fibers of interest identified in the above
procedure. Based on the x-ray CT data of the packed fiber
beds in the experiments, the shortest percolation force chains

are determined for the beds with various ARs, as highlighted
by the red particles that construct the chains in Fig. 4(a). We
also present additional force chains with similar morphology
by altering the starting fiber, beginning not from the highest
fiber but from the fiber in contact with the source plate, as
shown in green and blue in Fig. 4(a).

It is observed that the number of fibers in the shortest force
chain N decreases with increasing AR [Fig. 4(b)]. Assuming
the average tilting angle of the fibers from the horizontal plane
as θ , the projection of a single fiber in the direction of wave
propagation (vertical in the present setups) is AR · d f · sin θ ,
in which d f is fiber diameter. Thus, the smallest number of
fibers in the shortest force chain can be written as

N = H0

AR · d f · sin θ
, (3)

in which H0 is the fiber bed height between the source and
receiver plates and has a correlation with packing density φ,

H0 = V total
f

AS · φ
, (4)

where V total
f is the total volume of the fibers in the bed and

AS is the cross sectional area of the cylindrical container.
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FIG. 4. (a) Shortest percolation force chains (red) obtained from
the x-ray CT images in the experiments for AR = 3, 7 and 24.
Additional percolation force chains are colored in green and blue
for a comparison with the shortest ones. (b) Number of fibers in the
shortest force chain N (insert average tilting angle of the fibers θ )
and (c) normalized dispersive distance Ls/Dc as a function of fiber
aspect ratio AR.

Substituting Eq. (4) to (3) gives

N = V total
f

As · d f · AR · φ · sin θ
. (5)

For randomly packed, monodisperse rods, the correlation
between the packing density φ and AR is provided in Ref.
[20]. In a bed of disordered short fibers with the fiber aspect
ratios (ARs) up to 7, the average tilting angle of the fibers
from the horizontal plane θ decreases with increasing AR,

as described in Ref. [30]. In the present experiments and nu-
merical simulations, an increase in θ with AR is observed for
AR > 7 as shown in the insert of Fig. 4(b) (open squares), due
to the constraints by the boundary of the container on the ori-
entation of the fibers. Thus, a piecewise function is proposed
to describe the different behaviors of the AR dependence,

θ =
{

tan−1
(

a
AR

)
, AR � 7

tan−1(bAR), AR > 7,
(6)

in which a and b are the parameters depending on fiber contact
properties (e.g., interfiber friction coefficient and coefficient
of restitution) and the size ratio of the container to the fiber
length. By fitting to the experimental and numerical data, the
model describing the correlation of θ and AR based on Eq. (6)
is determined in the inset of Fig. 4(b) (solid line).

Therefore, according to Eq. (5), N can be expressed as a
function of AR in Fig. 4(b). In a chain of more fibers, the
force pulse needs to transmit through more fiber-fiber contact
points, slowing down transmission speed due to small con-
tact areas and dissipative nature of the contacts. Thus, lower
wave speeds vw are obtained for the beds with smaller ARs
[Fig. 2(c)], which have a larger numbers of fibers and contacts
in their shortest force chains [Fig. 4(b)].

Spatial deviation of a force chain from the propagation
direction plays a significant role in dispersing the wave and
dissipating the energy. As shown in Fig. 4(c), a dispersive
distance Ls is defined as the half length of the projection
of a fiber in the transverse (horizontal in the present setups)
direction,

Ls = 1
2 AR · d f · cos θ, (7)

which is normalized by the diameter of the cylindrical con-
tainer Dc:

Ls

Dc
= AR · d f · cos θ

2Dc
. (8)

As AR increases, the normalized dispersive distance Ls/Dc

increases (Fig. 4(c)), enhancing dispersive propagation of
forces and energies [Figs. 3(c), 3(f), and 3(i)]. Due to the
enhanced dispersive propagation, the forces and energies are
trapped in the upper region of the bed, causing a delay in
the peak force transmission and a decrease in the peak force
speed vpk . The wave speed vw and peak force speed vpk exhibit
opposite trends with respect to AR, as vw depends on the
number of fibers and contacts in the shortest percolation force
chain, while vpk is dominated by the dispersive distances of
the contact force chains.

D. Effect of fiber flexibility

Flexibility of fibers is characterized by fiber bending mod-
ulus Eb, quantifying the capacity to resist fiber bending
deformation (see Appendix). The fibers are more flexible
with a smaller Eb. In our experiments, stiff fibers with Eb =
7.9 × 109 Pa (made of photopolymer resin) and semiflexible
fibers with Eb = 6.6 × 106 Pa (silicone rubber) are used to in-
vestigate the effect of fiber flexibility on the wave propagation
[Figs. 5(a) and 5(b)]. More significant attenuation with a much
smaller force on the receiver is obtained for the semiflexible
fibers [Fig. 5(d)] than the stiff ones [Fig. 5(c)]. It takes a much
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FIG. 5. Experimental setups of impacts on (a) stiff and (b) semiflexible fibers. Experimental results of forces exerted on the source and
receiver as a function of time for the beds of (c) stiff and (d) semiflexible fibers.

longer time for the receiver force to reach the peak for the
semiflexible fibers, and meanwhile a second force impulse
on the source plate occurs due to the postshock expansion
of the fiber bed [Fig. 5(d)]. These results demonstrate the
excellent ability of energy absorption and shock mitigation for
the semiflexible fibers.

The DEM simulations allow us to check the effect of
fiber bend moduli Eb spanning a wide range of 10 to 1010

Pa. As shown in Fig. 6, the largest attenuation coefficients
α and lowest wave speeds vw are obtained in the beds of
semiflexible fibers with 102 Pa < Eb < 107 Pa, through which
wave propagates dispersedly as depicted in the spatiotemporal
distribution of �Fc for Eb = 6.6 × 106 Pa. The dispersive
wave propagation is attributed to the fact that more energy
is trapped in the form of potential energy due to fiber de-
formation [Figs. 7(d)]. Therefore, most of the kinetic energy
�K remains in the upper region of the bed and barely trans-
mits downwards [Fig. 7(b)]. As the fibers become stiffer,
i.e., Eb > 108 Pa, the attenuation α decreases and wave speed
vw increases. The small fiber deformation results in a low
capacity to store the potential energy [Fig. 3(h)]. In addition,
the wave propagates faster within stiff fibers. Thus, s solitary
wave is observed in the spatiotemporal distribution of �Fc for
the stiff fibers.

When the fibers are nearly completely flexible with Eb <

103 Pa, the bed is consolidated with a large packing density

(φ = 0.662 for Eb = 79 Pa). Although the packing densities
of the quasi-fully-flexible and stiff systems are significantly
different, wave propagation patterns are surprisingly similar,
as shown in the spatiotemporal distributions in Fig. 6. In the
stiff fiber system, the disordered fibers are packed at a lower
density of φ = 0.437 with a smaller number of the fiber-fiber
contacts. Besides through the contact points, the force trans-
mission through the elongated bodies of the fibers also plays a
critical role in the stress wave propagation. Thus, faster force
transmission and wave propagation occur with larger stiffness
of the fiber material. In contrast to the quasi-fully-flexible
system, where packing density is much higher (φ = 0.662)
with a much larger contact number, the forces are transmitted
primarily though the dense network of the strong contacts.
Such strong contacts facilitate the rapid transmission of con-
tact force (Fig. 6) and kinetic energy [Fig. 7(a)] to the bottom
receiver plate, leading to higher wave speeds vw (Fig. 6). In
spite of large fiber deformation, the quasi-fully-flexible fibers
have a weak capacity to store the potential energy [small
magnitudes of �U in Fig. 7(c)], due to the very small bending
modulus Eb. Thus, solitary wave propagation is obtained in
the quasi-fully-flexible fibers, similar to the wave pattern in
the stiff fibers, and the force pulse is less reduced with smaller
attenuation coefficients α. As a result, it is found that the
semiflexible fibers with moderate bending moduli have the
best ability to absorb energy and reduce the shock impact.
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FIG. 6. Wave speed vw and attenuation coefficient α as a function of fiber bending modulus Eb. The inserts show the snapshots of fiber
beds and spatiotemporal distributions of the incremental contact force �Fc obtained from the DEM simulations.

In conclusion, we experimentally and computationally elu-
cidate stress wave propagation in packings of disordered
flexible fibers. We find that dispersive wave propagation con-
tributes to a large extent of attenuation in forces and energies.
A larger fiber aspect ratio leads to fewer fibers in the shortest

percolation force chain, increasing wave speed, and a larger
dispersive distance of the force chain, promoting the dis-
persive wave propagation. Semiflexible fibers with moderate
fiber bending moduli Eb have the best capacity to absorb ki-
netic energy by converting it to potential energy through fiber

FIG. 7. Spatiotemporal distributions of [(a), (b)] incremental kinetic energy �K , and [(c), (d)] incremental potential energy �U for the
quasi-fully-flexible fibers with a bending modulus of Eb = 79 Pa and semiflexible fibers with Eb = 6.6 × 106 Pa, respectively. All the fibers
have the same aspect ratio of AR = 7. The present results are obtained from the DEM simulations.
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deformation, which is eventually dissipated through interfiber
contacts and fiber vibration. Consequently, lower wave speeds
and larger attenuation in transmitted forces are obtained for
semiflexible fibers compared with stiff fibers and quasi-fully-
flexible fibers. The findings in this paper open possibilities
for wave-control technology and improved design of energy-
absorbing and shockproof materials.
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APPENDIX: THEORETICAL ASPECTS
OF THE DISCRETE ELEMENT METHOD (DEM)

FOR FLEXIBLE FIBERS

In the present DEM simulations, a fiber is represented
by a string of bonded spherocylinders and two neighboring
spherical nodes are connected by a virtual bond [Fig. 8(a)].
Theoretical details of the numerical method are provided in
Refs. [24,25] and summarized here for completeness of the
contents. The motion of a fiber is determined by a collective
movement of the node spheres, including translational and ro-
tational motion governed by Newton’s second law of motion,

mi
dvi

dt
= Fc

ni + Fc
ti + Fb

ni + Fb
ti + Fcd

ni

+ Fcd
ti + Fbd

ni + Fbd
ti + mig (A1)

FIG. 8. (a) A sketch of the flexible fiber model and (b) bond
forces and moments exerted on a node sphere in the DEM simula-
tions. The images are adopted from Ref. [24].

and

Ji
dωi

dt
= Mc

i + Mb
i + Mcd

i + Mbd
i , (A2)

in which vi and ωi are the translational and angular velocity
vectors, respectively, of node sphere i, with mass mi and
moment of inertia Ji. The translational movement of the node
sphere is driven by the normal contact force Fc

ni, tangential
contact force Fc

ti, normal bond force Fb
ni, tangential bond

force Fb
ti, contact damping forces Fcd

ni and Fcd
ti , bond-damping

forces Fbd
ni and Fbd

ti , and gravitational force mig. Rotational
movement is induced by the moments Mc

i , Mb
i , Mcd

i , and Mbd
i

due to the contact forces, bond forces and moments, con-
tact damping forces, and bond-damping forces and moments,
respectively.

The bond forces (F b
n and F b

t ) and bond moments (Mb
twist

and Mb
bend), as illustrated in Fig. 8(b), are functions of bond

deformation, which is described by the relative displacements
between two connected node spheres. Hence, the normal and
tangential bond forces F b

n and F b
t are expressed as linear

functions of normal and tangential displacements �b
n and �b

t ,
respectively,

F b
n = EbA

lb
�b

n = Kb
n �b

n (A3)

and

F b
t = GbA

lb
�b

t = Kb
t �b

t . (A4)

The bond-twisting moment Mb
twist and bond-bending mo-

ment Mb
bend are computed incrementally based on the relative

twisting angular velocity θ̇twist and relative bending angular
velocity θ̇bend between two connected node spheres,

dMb
twist = GbIp

lb
θ̇twistdt = Kb

twistθ̇twistdt (A5)

and

dMb
bend = EbI

lb
θ̇benddt = Kb

bendθ̇benddt . (A6)

In Eqs. (A3)–(A6), Eb and Gb [Gb = Eb
2(1+νb ) , where νb is

the Poisson’s ratio of the bond] are the elastic modulus and
shear modulus, respectively, of the bond material; A and lb
are the cross-sectional area and length, respectively, of the
bond; I = πr4/4 is the area moment of inertia; Ip = πr4/2
is the polar area moment of inertia; r is the radius of the
fiber; and dt is the time step. According to Eq. (A6), the fiber
flexibility, indicating the ease for fiber bending deformation,
is characterized by the bending modulus Eb: a smaller Eb

corresponds to a larger fiber flexibility.
Kinetic energy can be dissipated through deformation and

vibration of the flexible fibers. This loss of kinetic energy is
considered through bond-damping forces and moments,

F bd
n = βb

√
2miKb

n vr
n, (A7)

F bd
t = βb

√
2miKb

t vr
t , (A8)

Mbd
twist = βb

√
2JiKb

twistθ̇twist, (A9)
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and

Mbd
bend = βb

√
2JiKb

bendθ̇bend, (A10)

where Kb
n , Kb

t , Kb
twist, and Kb

bend represent the normal, shear,
twisting, and bending stiffnesses, respectively, of the bond as
defined in Eqs. (A3)–(A6). The symbols, vr

n, vr
t , θ̇twist, and

θ̇bend, represent the relative normal velocity, tangential veloc-
ity, twisting angular velocity, and bending angular velocity,
respectively, between two bonded node spheres of mass mi

and moment of inertia Ji. The kinetic energy dissipation rate
due to the deformation and vibration of the flexible fibers is
determined by the bond-damping coefficient, βb: the larger βb,
the faster the energy is dissipated.
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