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Abstract

The interaction between air shock waves and granular materials is fundamental in both natural

phenomena and engineering applications. However, the role of particle morphology, particularly

that of flexible fibers, remains unclear. Here, we numerically investigate shock-induced dispersal

and resistance in dense flexible fiber curtains, using a coupled Discrete Element Method and Com-

putational Fluid Dynamics (DEM–CFD) framework. We find that the dispersal dynamics and

shock attenuation are governed by the competition between fiber interlocking and cluster volume

fraction (solid volume fraction in a cluster). Low aspect ratio fiber systems, which have high clus-

ter volume fractions, exhibit non-uniform expansion, with instabilities at the downstream interface

leading to pronounced granular ejections, resulting in rapid dispersion of the clusters. In contrast,

high aspect ratio fiber systems, which possess lower cluster volume fractions, maintain integrity

of the clusters for much longer periods due to the fiber interlocking contacts, thereby suppressing

the interfacial instabilities. Consequently, stronger resistance to the shock by the fiber cluster is

obtained at early stage of the wave propagation for the low aspect ratio fibers, and the stronger

shock-resistance occurs at a later stage for the high aspect ratio fibers. Fiber flexibility modulates

these behaviors by promoting fiber bending deformation, effectively weakening geometric interlock-

ing and reducing air drag. To describe the time evolution of the fiber curtain expansion, the fiber

aspect ratio should be included in scaling law to account for the effect of fiber shape on the air drag.

For the very flexible fibers, an effective fiber aspect ratio is required to replace the real fiber aspect

ratio in the scaling law, in order to take the effect of large fiber deformation into account. These

findings offer a fundamental understanding of the shock-driven multiphase flows and dispersal of

the elongated, flexible fibers.

I. INTRODUCTION

The interaction between shock waves and granular materials is ubiquitous in many critical

processes across natural systems and engineering applications. In natural environments, such

interactions drive the dynamics of volcanic pyroclastic flows, influencing eruption hazards

and ash dispersal [1, 2], and they play an instrumental role in propagation of seismic waves

through granular soils during earthquakes, affecting ground stability and infrastructure re-

silience [3, 4]. In engineering contexts, they are pivotal to explosion mitigation, enhancing
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structural safety during blasts [5, 6], as well as to cold spraying processes for advanced coat-

ings [7] and mining safety measures aimed at preventing dust explosions [8]. These diverse

applications underscore the necessity of understanding the physics of shock-induced granular

flows.

During a shock wave propagates through a granular medium, gas-particle interactions in-

duce wave reflection and transmission, facilitate energy exchange between the gas and solid

phases, and drive particle acceleration [9, 10]. These behaviors stem from intricate multi-

physics phenomena, including energy conversion, inelastic collisions, and wave scattering. A

critical parameter governing these interactions is the solid volume fraction ϕ0, defined as the

ratio of volume of all the solid particles to volume of the space occupied by the bulk granular

material. Early experiments on the shock-impacted dilute particle curtains, with ϕ0 varying

from 0.1% to 3%, demonstrated that reflected shock waves emerge only when ϕ0 exceeds 1%

[11]. Subsequent studies, which utilized dense particle curtains packed under gravitational

forces [12–15], established correlations between strength of the reflected shock and curtain

properties, including ϕ0 [16], curtain thickness [15], particle size [17], and particle density

[14]. Upstream and downstream fronts of a particle curtain subject to the shock impact

exhibit markedly distinct behaviors. Within tens of microseconds of the incident shock

impinging, the downstream particles initiate motion, and after a short period of delay the

upstream particles commence movement at a reduced velocity [12]. Numerical simulations

reveal that positive gas velocity gradients and negative pressure gradients occur within the

curtain, and the net force from the negative pressure gradient accelerates the downstream

particles and the positive gas velocity gradient drives the curtain to expand [13].

The dispersal and expansion of dense particle curtains under shock loading have been

systematically analyzed. Scaling laws were developed to relate physical parameters to di-

mensionless quantities. Ling et al. [13] proposed using the time taken for a shock wave to

pass through the particle curtain to normalize the time t. Theofanous et al. [18] further

introduced a pressure-based temporal scaling approach by normalizing the spreading time t

against theoretical pressure of the reflected shock, calculated by assuming the particle cur-

tain as a rigid wall. This scaling approach successfully collapsed the early-time data of the

particle curtain expansion from their experiments and prior studies [12, 13], despite neglect-

ing the permeability of particle curtain. DeMauro et al. [19] advanced this framework using

high-speed Particle Image Velocimetry (PIV) measurement, demonstrating that the tran-
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sient pressure gradient, which is driven by reflected and transmitted shocks, serves as the

primary mechanism governing the curtain expansion and the pressure gradient is strongly

dependent on the solid volume fraction. Further, by treating the curtain as a porous screen,

DeMauro et al. [20] incorporated the solid volume fraction directly into the scaling corre-

lation, which collapsed data across various Mach numbers Ms, solid volume fractions ϕ0,

particle densities and curtain thicknesses for the spherical particles.

Shock-induced particle dispersal is further complicated by mesoscale behaviors such as

particle clustering and interfacial instability [21]. Experiments with spherical particles reveal

that the localized regions of high ϕ0, which are usually referred to as clusters, are devel-

oped on the downstream side of the curtains [22], accompanied by gas-particle interfacial

instabilities that can manifest as sharp, finger-like protrusions of particles [23–25]. The par-

ticle ejections, driven by localized momentum transfer, travel at the velocities surpassing

the average dispersal velocity, and their characteristics depend on gas-to-particle mass ratio

[26, 27]. A higher gas-to-particle mass ratio enhances the interaction between the gas and

solid phases, promoting the formation of these mesoscale structures.

Although extensive studies have elucidated these shock-impacted processes for the ideal-

ized spherical particles, the role of particle morphology—particularly of flexible fibers with

high fiber aspect ratios (AR) and bending deformation compliance—remains largely un-

explored. Unlike the spherical particles, elongated and deformable nature of such fibers

suggests they exhibit distinct energy dissipation pathways [28] and dispersal behaviors. The

flexible fibers with high aspect ratios have different mesoscale behaviors from the spherical

particles. The elongated fibers possess the ability to bend, twist, and entangle with their

neighbors. These morphological attributes allow significant bulk compressibility and high

shear yield strength due to geometric interlocking, in which individual fibers physically in-

terweave and mechanically constrain one another. These distinct features, which are absent

in the spherical particle systems, lead to unique packing structures and force transmission

mechanisms within the fiber assemblies [29, 30]. Consequently, the presence and strength

of the fiber interlocking can potentially modify the particle clustering, alter the interfacial

instabilities, and induce anisotropic flow resistance within the shock-dispersed media.

To bridge the knowledge gaps in the interactions between the shock and fiber assem-

blies, in this work we employ a coupled Discrete Element Method and Computational Fluid

Dynamics (DEM-CFD) approach to simulate the processes of shock waves impacting on
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dense flexible fiber curtains. The effects of fiber properties (including fiber aspect ratio and

fiber flexibility) on granular dispersion pattern, cluster formation, and shock attenuation

are investigated. At last, a modified scaling law is proposed to describe the time-dependent

expansion of the fiber curtains with various fiber aspect ratios and flexibilities.

II. NUMERICAL METHOD

In this work, compressible air-fiber flows are simulated using a coupled DEM-CFD

method. The flexible fibers are modelled via a DEM-based bonded sphero-cylinder fiber

model, which was developed in the previous work [31, 32]. The air flow is governed by

a continuum-based CFD approach, solving the compressible Navier-Stokes equations [33].

Two-way coupling is considered for the gas–fiber interaction. The governing equations of

the numerical scheme used in this study are presented below.

A. Bonded sphero-cylinder fiber model

In the present DEM simulations, a flexible fiber is represented by a string of bonded

sphero-cylinder elements, and a sphero-cylinder element includes two neighboring spherical

nodes connected by a virtual bond as shown in figure 1(a). The motion of a fiber is deter-

mined by collective movement of the node spheres, including translational and rotational

movement governed by Newton’s second law of motion,

ms
dvs
dt

= F b + F c + F b
d + F c

d + F gs, (1)

and

Js
dωs

dt
= M b +M c +M b

d +M c
d , (2)

in which vs and ωs are the translational and angular velocity vectors, respectively, of the

node sphere with mass ms and moment of inertia Js. The translational movement of the

node sphere is driven by the contact force F c between two contacted sphero-cylinders, bond

force F b generated from virtual bond to resist the elastic deformation of the fiber, contact

damping forces F c
d and bond damping forces F b

d . The rotational movement is induced by the

moments M c, M b, M c
d and M b

d due to the contact forces, bond forces/moments, contact

damping forces, and bond damping forces/moments, respectively.
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FIG. 1. (a) A sketch of flexible model and an illustration of bond forces and moments exerted on

a node sphere. (b) An illustration of drag force and lift force exerted on a sphero-cylinder element.

The bond forces F b, including normal bond force F b
n and tangential bond force F b

t ,

and bond moments M b, including twist moment M b
twist and bending moment M b

bend, as

illustrated in figure 1(a), are functions of bond deformation, which is described by the relative

displacements between two connected node spheres. Hence, the normal and tangential bond

forces F b
n and F b

t are expressed as linear function of normal and tangential displacements

∆b
n and ∆b

t , respectively,

F b
n =

EbA

lb
∆b

n = Kb
n∆

b
n, (3)

and

F b
t =

GbA

lb
∆b

t = Kb
t∆

b
t . (4)

The bond twist moment M b
twist and the bond bending moment M b

bend are computed in-

crementally for each time step dt based on the relative twisting angular velocity θ̇twist and

relative bending angular velocity θ̇bend between two bond-connected node spheres,

dM b
twist =

GbIp
lb

θ̇twistdt = Kb
twistθ̇twistdt, (5)

and

dM b
bend =

EbI

lb
θ̇benddt = Kb

bendθ̇benddt. (6)

In Eqs. (3)-(6), Eb and Gb (Gb =
Eb

2(1+νb)
where νb is the Poisson’s ratio of the bond) are

the elastic modulus and shear modulus, respectively, of the bond material; A and lb are the

cross-sectional area and length, respectively, of the bond; I = πr4/4 is the area moment
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of inertia; Ip = πr4/2 is the polar area moment of inertia, and r is the radius of the fiber.

According to Eq. (6), fiber flexibility, indicating the ease for the bending deformation of

the fiber, is characterized by the bending modulus Eb: a smaller Eb corresponds to a larger

fiber flexibility. Fiber-fiber contacts and fiber-wall contacts are modelled as normal and

tangential contact forces, described by the modified Hertz-Mindlin models [32, 34]. Viscous

dissipation of energies in the contacts and fiber deformations is considered through contact

damping and bond damping forces/moments [32, 34].

The interaction force between air and each sphero-cylinder element, denoted as Fgsc, is

expressed as [35]

F gsc = −Vsc∇p+ Vsc∇ · τ + εg(Fdrag + Flift) (7)

in which Vsc is the volume of a sphero-cylinder element, p is the local air pressure, τ is the

local viscous stress tensor of the air, εg is the local porosity, Fdrag and Flift are the drag

and lift forces as shown in figure 1(b), respectively, exerted on the sphero-cylinder element.

The interaction force F gsc on each sphero-cylinder element is uniformly distributed to its

two constituent spherical nodes, and therefore the air force on each node sphere is given by

F gs = 0.5F gsc.

B. Equations for compressible air flows

For the air phase, volume-averaged governing equations of mass, momentum, and energy

in the Eulerian framework are expressed as follows [17],

∂(εgρg)

∂t
+∇ · (εgρgug) = 0, (8)

∂(εgρgug)

∂t
+∇ · (εgρgugug) = −∇p+∇ · τ −

∑ns

i=1 F
gsc

Vcell
, (9)

∂(εgρgE)

∂t
+∇ · (εgρgEug) = −∇ · (εgpug) +∇ · (εgτ · ug)

−∇ · (εfpuf ) +∇ · (εfτ · uf )

−
∑ns

i=1 F
gsc · uf

Vcell
.

(10)

The velocity, density, and total energy of the air in a fluid cell are denoted as ug, ρg, and

E = e+ |ug |2
2

, where e is the specific internal energy. The mass-averaged velocity vector and
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solid volume fraction of the sphero-cylinder elements in a fluid cell are represented by uf

and εf , respectively. The pressure p is calculated from the ideal gas equation of state,

p = ρgRTg (11)

where R is the specific gas constant and Tg is the temperature of the air. The viscous stress

tensor τ has a linear relationship with shear rate for a Newtonian fluid, where the constant

of proportionality is the dynamic viscosity of the fluid (the gas), denoted as µg. For the

solid phase, the solid volume fraction εf and mass-averaged solid velocity vector uf in each

fluid cell are determined using a kernel-based averaging method [36]. The volume of each

sphero-cylinder element i is distributed to all fluid cells based on the distance between the

element and the cell center, and the weight function for the distribution is written as,

ωi,m =
K(|xi − xm|/b)∑Nc

m=1K(|xi − xm|/b)
, (12)

where K(x) = exp(−x2) is a kernel function, xi and xm represent the coordinates of the

sphero-cylinder element and fluid cell center, respectively, b is the bandwidth (set equal to

twice the fluid cell size), and Nc is the total number of the fluid cells, which are optionally

limited to those within a specified region to reduce computational cost. The normalization

in the denominator ensures that the total solid volume is preserved in the whole field. Given

the volume of the sphero-cylinder element i, Vsc,i, the solid volume fraction εf in the fluid

cell m of volume Vc can be calculated as,

εf =

∑np

i=1 ωi,mVsc,i
Vc

(13)

in which np is the total number of the sphero-cylinder elements. Similarly, the solid phase

velocity vector uf in the fluid cell m can be obtained as,

uf =

∑np

i=1 ωi,mVsc,ive,i
εfVc

(14)

in which ve,i is the translational velocity vector of the center of mass of the sphero-cylinder

element i.

To account for the combined effects of voidage and particle shape, the drag force on

each sphero-cylinder element is modeled using the Di Felice-Hölzer/ Sommerfeld model [37].

According to [38], the drag force Fdrag has the expression,

Fdrag =
1

2
CdρgA⊥ε

2
g|ug − ve|(ug − ve)ε

−(χ+1)
g , (15)
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in which ve is the translational velocity vector of the center of mass of a sphero-cylinder

element, A⊥ is the projected area of a sphero-cylinder element on the plane perpendicular

to the direction of the relative velocity ug − ve, and χ represents a function of the element

Reynolds number Re,

χ = 3.7− 0.65exp

[
−(1.5− log10Re)

2

2

]
, (16)

Re =
ρgdV εg|ug − ve|

µg
, (17)

and dV is the equivalent volume diameter of the fiber. As proposed by [39], the drag

coefficient Cd for a sphero-cylinder is written as,

Cd = Ccorr

[
8

Re

1√
ψ⊥

+
16

Re

1√
ψ
+

3√
Re

1

ψ3/4
+ 0.42× 100.4(− log10 ψ)

0.2 1

ψ⊥

]
(18)

in which ψ is the sphericity of a sphero-cylinder element, defined as the ratio of the surface

area of a volume-equivalent sphere to the surface area of the present sphero-cylinder, and

ψ⊥ is the crosswise sphericity, defined as the ratio of the cross-sectional area of the volume

equivalent sphere to the projected area of the sphero-cylinder element on the plane per-

pendicular to the direction of the relative velocity ug − ve. The two sphericity factors are

included in the drag coefficient calculation to consider the effects of the shape and orienta-

tion of the sphero-cylinder element. The correction factor Ccorr is incorporated to consider

the effects of air compressibility and is calculated as a function of element Reynolds number

Re and Mach number Ms according to Carlson and Hoglund [40]:

Ccorr = 1 + exp(− 0.427

M4.63
s

− 3

R0.88
e

). (19)

The lift force Flift is exerted on a sphero-cylinder element in the direction perpendicular

to the relative velocity vector ug − ve, and it is written in the form,

Flift =
1

2
Clρg

π

4
d2V ε

2
g |ug − ve|2nliftε

−(χ+1)
g (20)

in which nlift is unit vector in the direction of the lift force vector. The lift coefficient

is estimated by Cl = Cdsin
2φcosφ, where φ is the angle between the major axis of the

sphero-cylinder and the direction of the relative velocity ug − ve [41].
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FIG. 2. (a) Numerical model of a shock impacting on a granular curtain of flexible fibers in a long

tube. (b) A sketch of the numerical set-up of a shock impacting on an array of elongated cylinders,

which mimics the experimental set-up by [42]. (c) A comparison of the pressures of reflected and

transmitted waves at the specified positions obtained from the present simulations and previous

experiments [42]. (d-e) Validation against the shock-induced granular dispersion experiments of

Ling et al. [13]: (d) comparison of upstream curtain front (UCF) and downstream curtain front

(DCF) between the simulation and experimental results and (e) comparison of reflected and trans-

mitted wave pressure histories at two specified monitoring locations between the simulation and

experimental results.

III. NUMERICAL SET-UP AND CODE VALIDATION

In this study, a shock tube configuration is employed to investigate the interaction be-

tween high-pressure air shocks and dense fiber curtains, following a design similar to that of

[24], as illustrated in Figure 2(a). The computational domain has a rectangular geometry,

with transverse dimensions (y and z-directions) of 28 mm and an axial (x-direction) length

of 1000 mm in the air inflow direction. The cross-sectional area is therefore A = 28 mm ×

28 mm.

The computational domain is divided along the streamwise direction (x-direction) into

two regions: an upstream region without fibers and a downstream region containing a curtain
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of randomly packed fibers. At the beginning (t = 0), the downstream region is initialized

with a quiescent ambient air, representing pre-shock state, at a pressure of p1 = 10132 Pa, a

temperature of T1 = 298.15 K, and zero air velocity u1 = 0. The upstream region is initialized

with the post-shock state of an incident shock wave at a Mach number of Ma = 1.1. The

post-shock conditions, determined using the Rankine-Hugoniot relations for an ideal gas,

include the air pressure of p2 = 126150 Pa, temperature of T2 = 317.51 K, and air velocity

of u2 = 55 m/s in the streamwise x-direction [43]. This initial configuration produces a

planar shock wave that propagates from the upstream region into the downstream region,

ultimately interacting with the fiber curtain. Non-reflecting boundary conditions are applied

on both the upstream and downstream end planes (perpendicular to the x-direction), for

which zero gradients are enforced for the air pressure, temperature, and velocity to minimize

wave reflections from the streamwise boundaries. The transverse boundaries (perpendicular

to the y- and z-directions) are treated as impermeable, no-slip walls for the air flows, and zero

gradients are applied for the pressure and temperature on these boundaries. Two positions

are chosen to monitor the changes in the air states: Point A is located in the upstream

region at xA = −0.19 m to measure the reflected wave pressures pr and velocity ur, and

Point B is located in the downstream region at xB = 0.65 m to measure the transmitted

wave pressures pt and velocity ut, as depicted in Figure 2(a).

To generate a dense fiber curtain, the following procedure is employed: i) A specified

number of fibers are randomly placed within the downstream region (x > 0), with random

positions and orientations. Initial overlaps between fibers are avoided; ii) A vertical planar

wall (perpendicular to the x-direction) is introduced at the position x = 0 (Figure 2(a)); iii)

Gravitational forces in the negative x-direction are assigned to the fibers, driving the fibers

to pack on the vertical wall at x = 0; iv) When the densely-packed fiber curtain remains

stable with negligible fiber movement, the gravitational force is deactivated and the planar

wall is removed. After this initialization, the shock impact simulation starts in the absence

of gravitational forces.

All the fibers have a density of ρf = 880 kg/m3, a diameter of df = 0.65 mm, a friction

coefficient of µf = 0.4, and a Young’s modulus Ec = 5 × 108 Pa for the calculation of

fiber-fiber contact forces. Following Guo et al. [32], a contact damping coefficient of βc =

7.09 × 10−2 and a bond damping coefficient of βb = 3.35 × 10−2 are adopted to model the

energy dissipation through fiber-fiber contacts and fiber deformation, respectively. The fiber
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aspect ratio, AR, defined as the ratio of length to diameter of a fiber, is varied in the range

of 1 ≤ AR ≤ 20. Though a fiber can experience tensile/compressive, shearing, twisting, and

bending deformations, the bending deformation dominates for the elongated fibers. Thus,

the bond bending modulus Eb changes between 5×104 Pa and 5×108 Pa to achieve different

fiber flexibilities in the present simulations.

The bonded sphero-cylinder flexible fiber model has been extensively validated in prior

studies, including single-fiber deformation [31] and the mechanical response of fiber assem-

blies under compression [32]. For compressible air modeling, the open source CFD solver

rhoCentralFoam, based on OpenFOAM®, is employed. It is a robust finite-volume solver

employing central schemes, specifically designed for high-speed flows. Its reliability is under-

pinned by extensive validation against a comprehensive suite of canonical test cases, ranging

from the one-dimensional shock tube, two-dimensional supersonic flow over a step, super-

sonic jet density measurements and hypersonic flow over a biconical object [33]. This rigorous

validation ensures the solver’s suitability for the complex interactions studied herein.

The current coupled DEM-CFD scheme is further validated through two distinct bench-

mark cases. First, to verify the modeling of the interaction between air flow and elongated

cylindrical objects, we simulate a shock impacting an array of fixed cylinders, replicating

the experimental setup of Suzuki et al. [42] as depicted in Figure 2(b). In the simulations,

identical cylinders with an aspect ratio of AR = 12 are arranged in regular lattice positions.

Their major axes are aligned in the same direction, which is perpendicular to the flow di-

rection. Four configurations of the cylinder arrangement (rows × columns) are considered:

4× 1, 4× 2, 4× 3, and 4× 4. Each cylinder is discretized into 11 sphero-cylinder elements

with 12 spherical nodes. An incident shock wave at a Mach number ofMa = 1.4 is initialized

in the domain using the same approach as the simulation illustrated in Figure 2(a).

In the experiments Suzuki et al. [42], the pressures of the reflected wave (pr) and the

transmitted wave (pt) are measured at the locations xr = −0.22 m and xt = 0.075 m,

respectively, as depicted in Figure 2(b). The results for each configuration are shown in

Figure 2(c). These results demonstrate that the pressure of the reflected wave, pr, normalized

by the ambient air pressure p1, increases and the normalized pressure of the transmitted

wave, pt/p1, decreases monotonically as the number of cylinders increases. The present

simulation results are in good agreement with the experimental results by Suzuki et al.

[42], validating our DEM–CFD scheme for simulating the interaction between shocks and

12



elongated cylindrical objects.

In the second case, to validate the modeling of shock-induced granular dispersion, we

simulate the same cases as those in the experiments by Ling et al. [13]. The computational

setup is also described as Figure 2(a). The shock (Ma = 1.66) impacts a 2 mm-thick curtain

of 115 µm spherical soda lime particles (AR = 1) at an initial volume fraction of 21%.

The evolutions of the upstream curtain front (UCF) and downstream curtain fronts (DCF)

are tracked in the simulations. As shown in Figure 2(d), the curtain fronts and the rate

of curtain expansion obtained from the simulations are in excellent agreement with the

experimental measurements. Further, Figure 2(e) shows that the present simulations can

accurately reproduce the histories of the transmitted and reflected shock pressures at two

monitoring locations of xA = -0.0686 m and xB = 0.0641 m.

IV. RESULTS AND DISCUSSION

Extensive numerical simulations were conducted to examine the propagation of shock

waves through randomly packed fiber curtains at Mach number of 1.1, systematically varying

fiber aspect ratios (AR = 1, 2, 4, 8, 12, 16, 20) or bending flexibility. To balance statistical

representativeness with computational feasibility, the total number of particles was carefully

controlled: simulations with spherical particles (AR = 1) involved with 100,000 particles to

ensure statistical resolution, while fiber counts decreased from 40000 (AR = 2) to 3390 (AR

= 20), maintaining a constant solid volume across all cases. The baseline bond bending

modulus is set to Eb = 5× 108 Pa, resulting in negligible fiber deformation during dispersal

stage for all AR values. Subsequent analyses employed reduced Eb values to systematically

evaluate the influence of fiber flexibility.

A. Fiber dispersion patterns

The temporal evolution of the morphology and extent of shock-induced dispersal of fiber

curtains is depicted in Figure 3, which compares four representative cases (AR = 1, 2, 8, 20)

at t = 0, 7.8 and 15 ms. Fibers are colored according to their instantaneous velocity. Full

videos visualizing the dynamic dispersal process for each of these representative cases are

provided in the supplementary movie 1. At t = 0, all configurations exhibit homogeneous
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t = 0

(a)

t = 7.8ms

t = 15ms

t = 0

t = 0

t = 7.8ms

t = 7.8ms
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t = 0
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AR = 1

(b) AR = 2

(c) AR = 8

(d) AR = 20
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δ

δ

FIG. 3. Snapshots of shock-induced fiber dispersal at t = 0, 7.8, and 15 ms for the fiber aspect

ratios (a) AR = 1, (b) AR = 2, (c) AR = 8, and (d) AR = 20. The color indicates the magnitude

of fiber velocity: the velocity increases as the color changes from blue to red. The fibers have a

bending modulus of Eb = 5× 108 Pa.
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random packing, however, their initial volume fractions ϕ0 vary significantly due to the

excluded volume effect arising from fiber elongation [29]. As detailed in the insert of Figure

4(b), ϕ0 decreases markedly with increasing AR: spherical particles (AR = 1) achieve dense

packing with ϕ0 = 0.58, while high-AR fibers, such as, AR = 20 form considerably sparser

fiber beds with ϕ0 = 0.21.

Under shock wave loading, all fiber systems, regardless of aspect ratio, exhibit rapid

downstream migration accompanied by granular curtain expansion, as illustrated in Fig-

ure 3. However, the dispersal characteristics reveal a strong dependence on AR. At t = 15

ms, low-AR fiber systems (e.g., AR = 1 and 2) display intense non-uniform expansion with

significant spatial heterogeneity in fiber distribution. In contrast, high-AR fiber systems

(e.g., AR = 20) undergo a more restricted expansion. In this case, the observed morpho-

logical irregularity arises primarily from the localized migration lag of a limited number of

fibers near the rear interface, while the global structural integrity of the dispersing curtain

is largely preserved. Figure 4(a) quantitatively depicts the temporal evolution of the nor-

malized curtain length, δ/δ0, where δ(t) denotes the instantaneous longitudinal extent of

the fiber curtain (measured from front to back edge along the direction of propagation), and

δ0 is its initial value. While all systems show an increase in length, the rate and overall

magnitude of expansion differ substantially with AR. For instance, the curtain composed

of AR = 20 fibers expands to approximately twice its initial length, 2δ0, by t = 15 ms,

whereas the AR = 1 system expands by nearly an order of magnitude, 10δ0, within the

same timeframe. Concurrently, Figure 4(b) presents the evolution of the average volume

fraction, ϕ, within the dispersing curtain. Intriguingly, this analysis shows that despite the

stark initial differences in expansion behavior and extent, the average volume fraction for all

systems tends to converge towards a unified decay profile by approximately t = 10 ms. This

convergence of ϕ despite differing spatial expansion suggests complex internal structural

evolutions, which will be explored in the next section.

Figure 5 presents the space-time (x-t) diagrams of the local volume fraction, ϕp(x, t),

for systems with AR = 1, 2, 8, 12, 16, and 20, clearly illustrating their distinct dispersal

patterns. These diagrams were generated through a discrete layer-wise analysis along the

streamwise (x) direction, with the granular curtain partitioned into 2-mm-thick slices. For

the low-AR fiber systems (AR = 1 and 2), as shown in Figures 5(a) and (b), the dispersal

patterns are nearly identical. A defining characteristic is the precipitous drop in volume
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𝐸𝑏
AR

FIG. 4. Dispersal dynamics of the fiber curtains characterized by (a) normalized curtain length

δ/δ0 and (b) average solid volume fraction of the curtain ϕ, in which the inset in (b) shows the

dependence of the initial solid volume fraction ϕ0 on the fiber aspect ratio AR. The fibers have a

bending modulus of Eb = 5× 108 Pa.

fraction at the curtain’s leading edge around t ≈ 9 ms. This phenomenon, indicative of

a rapid, localized disintegration and accelerated ejection of frontal particles, subsequently

leads to this frontal region approaching ϕp ≈ 0. Concurrently, a distinct band of higher

ϕp emerges within the interior of these curtains, signifying the transient formation of in-

ternal particle clusters that later dissipate as overall dispersion progresses. Conversely, the

high-AR systems (e.g., AR = 12, 16, and 20; Figures 5(d)–(f)) exhibit a markedly different

behavior. These systems sustain a high ϕp at their advancing front throughout the observed

period, showing no discernible signs of the frontal disintegration characteristic of their low-

AR counterparts. This suggests a significantly more stable and coherent propagation of the

leading edge, likely due to enhanced inter-fiber mechanical constraints. The AR = 8 system

(Figure 5(c)) exhibits a transitional response, displaying characteristics intermediate to the

extremes of low and high AR described previously. Although its leading edge eventually

experiences a notable decrease in volume fraction, this phenomenon is significantly post-

poned to approximately t ≈ 14 ms, indicating a delayed and less intense onset of frontal

particle acceleration compared to the AR = 1 and 2 systems. Furthermore, the internal

particle cluster, identified as a band of high ϕp, persists for a longer duration in the AR = 8

system than in its lower-AR counterparts, though it does not achieve the same degree of

sustained frontal integrity observed in the high-AR systems. These systematically varying,
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AR = 1 AR = 2 AR = 8(a) (b) (c)

(d)
AR = 12 AR = 16 AR = 20

(e) (f)

FIG. 5. Spatiotemporal x-t diagrams of local solid volume fraction ϕp during shock-induced fiber

curtain dispersal for the fiber aspect ratios (a) AR = 1, (b) AR = 2, (c) AR = 8, (d) AR = 12,

(e) AR = 16, and (f) AR = 20. The fibers have a bending modulus of Eb = 5× 108 Pa. The white

dash-lines represent the upstream and downstream air-solid interfaces of the fiber curtains.

AR-dependent dispersal patterns—particularly the differences in the stability of the cur-

tain’s leading edge and the persistence of internal clusters—strongly indicate the governing

influence of AR-modulated inter-fiber interactions and the resulting structural integrity of

the particulate assembly.

The observed variations in dispersal pattern with AR can be primarily attributed to

the enhanced effective resistance to curtain expansion, manifesting as an increased effective

viscosity or enhanced stability, arising from geometric interlocking in systems of elongated

particles. As the AR increases, fiber interlocking becomes more pronounced during dispersal.

This facilitates the formation of persistent contact networks that stabilize the fiber curtain,

effectively imparting greater structural integrity. Such a mechanism, where interlocking

contributes to viscosity-like behavior or augmented static stability, has also been recognized

in other granular phenomena, such as mechanical compression [44, 45].

The concept that interlocking enhances effective viscosity and stability is strongly cor-

roborated by the distinct responses of high-AR systems to various macroscopic loads. Fig-

ure 6(a) comprehensively illustrates these AR-dependencies by plotting three key parame-

ters, each reflecting a different loading scenario: (i) the angle of repose (characterizing static
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FIG. 6. Dependences of the angle of repose, normalized final length of the fiber curtain, and

normalized shear stress on the fiber aspect ratio AR.

stability against gravity) is presented against the left y-axis; (ii) the normalized final curtain

length, δfinal/δ0, (quantifying resistance to shock-induced dispersal) is shown against the

primary right y-axis; and (iii) the normalized shear stress, τ ∗, from literature (representing

effective shear viscosity) is plotted against the secondary right y-axis.

First, focusing on static stability, our simulated angle of repose demonstrably increases

with AR, rising from approximately 7◦ for AR = 1 to 70◦ for AR = 20. This quantitative

result underscores that high-AR fibers, through superior geometric interlocking, achieve

greater static stability. They form significantly more robust and steeper piles that are

inherently more resistant to gravitational collapse or minor external perturbations. Next,

considering the system’s resistance to shock-induced dispersal, the normalized final curtain
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length at t = 18.2 ms, δfinal/δ0, extracted from Figure 4(a), reveals a clear inverse relationship

with AR. This directly indicates that systems with stronger geometric interlocking are more

effective at resisting the dispersive action of the shock wave, showcasing enhanced stability

against dynamic impact. Furthermore, the dynamic resistance to shear deformation also

exhibits a pronounced AR-dependence. The normalized shear stress data, τ ∗, synthesized

from studies on sheared cylindrical particles [46], shows that at a specific solid volume

fraction (ϕ = 0.5), τ ∗ increases substantially with particle aspect ratio. This heightened

impedance to shear flow is principally attributed to the increased difficulty in disentangling

and reorienting interlocked elongated particles. This multi-faceted evidence compellingly

demonstrates the pivotal role of geometric interlocking in enhancing the effective viscosity

and stability of high-AR fiber systems. Such interlocking-driven structural integrity is a

central mechanism for understanding their unique dispersal behavior and enhanced stability

under shock loading conditions.

To directly examine how geometric interlocking and its associated stabilizing effects mate-

rialize at the mesoscale within shocked fiber curtains, we calculated total inter-fiber contact

force within each spatial layer by summing all pairwise fiber-fiber interaction forces. The re-

sulting contact force space-time diagrams for two representative systems—AR = 2 and AR =

20—are shown in Figures 7(a) and 7(b), respectively. Initially, both systems exhibit a rapid

accumulation of contact forces during the shock loading phase, indicative of the immediate

compressive response of the curtain. However, their subsequent force evolution dynamics

diverge significantly, underscoring the role of AR. For the AR = 2 system (Figure 7(a)), the

enlarged insert reveals that a stress wave propagates through the fiber curtain along tran-

sient, densely packed contact chains. This is quickly followed by a complete disintegration

of the contact network after approximately t = 8 ms as dispersal progresses and inter-fiber

contacts are rapidly lost. In contrast, the AR = 20 system (Figure 7(b)) demonstrates a

markedly different force evolution dynamic. During the initial loading phase, contact forces

exhibit a more distributed and comparatively weaker growth, consistent with the damping-

like response attributed to an extended network of percolating force chains in long fiber

systems [28]. Most importantly, during the subsequent expansion phase, the leading edge

of the AR = 20 curtain maintains a sustained, high-intensity contact force network. This

persistent internal stress provides compelling evidence that geometric interlocking effectively

suppresses large-scale instabilities by maintaining the integrity and stability of these critical
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(a) (b)AR = 2 AR = 20

FIG. 7. Spatiotemporal x-t diagrams of mesoscopic contact force Fc for (a) AR = 2 (the inset

shows the contact force distribution within the curtain at the early stage) and (b) AR = 20. The

fibers have a bending modulus of Eb = 5 × 108 Pa. The white dash-lines represent the upstream

and downstream air-solid interfaces of the fiber curtains.

contact networks throughout the dispersal process.

To elucidate how AR-dependent structural characteristics manifest in the kinematic be-

havior of individual fibers, we analyze the probability density function (PDF) of their stream-

wise vx and transverse velocities vy at t = 18.2 ms. For consistency and better comparative

clarity, both velocity components are normalized by the post-shock streamwise gas velocity

Ux = 55 m/s, i.e., we consider vx/Ux and vy/Ux. Figure 8(a) presents the PDF of normalized

streamwise velocity vx/Ux. In low-AR systems (AR < 12), distribution is broad and nearly

uniform in the range vx/Ux ∈ [0.1, 0.82], reflecting disordered migration without dominant

collective modes. Notably, a small subset of fibers achieves velocities near the upper bound

of this range (vx/Ux ≈ 0.8), forming a distinct tail in the PDF. These fast-moving fibers,

concentrated at the leading edge of the dispersing curtain (as seen in Figure 3), possess sig-

nificantly higher momentum relative to the bulk, contributing to local instabilities and front

interface deformation. In contrast, high-AR systems (AR > 12) exhibit a sharply peaked

vx/Ux distribution around 0.5, reflecting a pronounced degree of velocity synchronization and

collective migration. This coherent motion arises from robust geometric interlocking among

elongated fibers, which fosters the formation of persistent contact networks and stabilizes

the curtain’s leading-edge morphology. As illustrated in the inset of Figure 8(a), these fiber

clusters migrate in a coordinated manner, maintaining structural integrity throughout the
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(a) (b)

FIG. 8. Probability density functions of the normalized fiber velocity components: (a) vx/Ux and

(b) vy/Ux at t = 18.2 ms. The fibers have a bending modulus of Eb = 5× 108 Pa.

dispersal process. The interplay between these strong clusters and surrounding gas-phase

dynamics will be further explored in the following section.

Figure 8(b) presents the PDF of the transverse velocity component, vy/Ux, across fiber

systems of varying aspect ratios. All systems exhibit a distinct peak at vy/Ux=0, consistent

with the predominantly axial nature of shock-induced dispersal. However, high-AR systems

feature a significantly sharper central peak, indicating a larger fraction of fibers with negli-

gible transverse motion. This constrained lateral mobility is a direct consequence of strong

geometric interlocking, which limits out-of-plane movement and reinforces collective align-

ment. In contrast, low-AR systems display broader vy/Ux distributions with extended tails,

highlighting a non-trivial subset of fibers possessing appreciable transverse velocities. These

anomalous lateral excursions disrupt local coherence and are closely associated with the

emergence of interfacial instabilities [23] and the onset of non-uniform front morphologies.

B. Cluster-induced resistance

The preceding analysis has revealed that fiber aspect ratio critically influences the stabil-

ity of the dispersing fiber curtain, leading to the formation of fiber clusters with markedly

distinct characteristics. These AR-driven differences in cluster stability and morphology

directly govern the resistance imparted by the fiber curtain to the propagating shock wave

and subsequent gas flow.
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AR

(a) (b)

FIG. 9. Time evolution of the pressure p of (a) the reflected wave at Point A and (b) the transmitted

wave at Point B for various fiber aspect ratios AR. The fibers have a bending modulus of Eb =

5× 108 Pa.

This cluster-induced resistance is shaped by the interplay of two primary effects tied to

these AR-dependent cluster attributes. Firstly, the persistent clusters, which are a manifes-

tation of the enhanced stability in high-AR systems, act as robust porous barriers. These

structures significantly impede gas penetration and enhance the overall drag exerted on the

curtain. Secondly, the rapid fragmentation of the less stable clusters prevalent in low-AR

systems leads to a different mode of interaction. This is characterized by the accelerated

dispersal of individual fibers and localized, high-velocity ejections of particles from the dis-

persing curtain front. While this latter process involves intense local gas-solid momentum

exchange, its contribution to the sustained, global resistance of the curtain differs markedly

from that of the intact, stable clusters found in high-AR configurations. This section will

quantitatively investigate how the AR-dependent dominance and interplay of these two

effects, stemming from the varying stability and characteristics of the fiber clusters, collec-

tively determine the temporal evolution and magnitude of the resistance offered by the fiber

curtain system.

The quantitative analysis of this cluster-induced resistance commences with an exam-

ination of gas-phase dynamics, utilizing pressure and velocity measurements at upstream

point A (for reflected wave characteristics) and downstream point B (for transmitted wave

characteristics), as depicted in Figures 9 and 10, respectively. The characteristics of the

reflected wave at point A (Figures 9(a) and 10(a)) offer a primary insight into the immedi-
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(a) (b)

FIG. 10. Time evolution of the streamwise air velocity Ug
x of (a) the reflected wave at Point A

and (b) the transmitted wave at Point B for various fiber aspect ratios AR. The fibers have a

bending modulus of Eb = 5× 108 Pa.

ate attenuation capability of the fiber curtain. A stronger reflected wave inherently signifies

a greater portion of the incident shock energy being repelled, and thus a more substantial

initial attenuation of the shock by the particulate medium. Our simulations reveal that low-

AR systems (e.g., AR = 1 to 4), with their higher initial ϕ0, generate significantly stronger

reflected waves (characterized by higher peak pressures and, correspondingly, lower peak

upstream gas velocities post-reflection) compared to high-AR systems. This unequivocally

demonstrates that a denser initial packing imposes greater immediate shock attenuation

effect [47]. The transmitted wave characteristics at point B (Figure 9(b) and 10(b)), repre-

senting the shock wave after its interaction with and attenuation by the fiber curtain, further

elucidate the AR-dependent resistance, particularly its temporal evolution. Naturally, the

presence of a reflected wave implies a reduction in the energy and intensity of the wave

transmitted downstream.

All systems exhibit an initial rise in downstream pressure and velocity upon arrival of this

attenuated wave, followed by a continued increase during dispersion, the nature of this evo-

lution varies markedly with AR. Initially, systems with higher AR values (which generated

weaker reflections) exhibit a stronger and more rapidly rising transmitted wave, reflecting

their lower immediate attenuation compared to the denser, low-AR configurations. However,

the subsequent evolution reveals more complex dynamics. For low-AR systems, a distinct,

highly dynamic phase emerges: the peak rate of pressure growth at point B strikingly coin-
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cides with the precipitous drop in leading-edge volume fraction and the accelerated ejection

of frontal particles (detailed in Figures 5(a) and 5(b) from x-t diagrams). This temporal

concurrence signifies a rapid structural collapse of the initial dense packing into a more

permeable, rapidly evolving state, which paradoxically facilitates a momentary surge in the

downstream pressure accumulation rate, despite their strong initial attenuation. High-AR

systems (e.g., AR = 12 to 20) transition into a more sustained interaction phase. Here, geo-

metric interlocking stabilizes the leading edge of the fiber curtain, leading to a more modest,

near-linear increase in transmitted wave pressure and velocity over an extended duration.

This behavior underscores a more persistent, albeit initially less intense, form of resistance

and ongoing attenuation.

While the initial overall volume fraction, ϕ0, offers a first-order explanation for early-

stage resistance—evidenced, for instance, by the stronger shock reflection from denser low-

AR systems—this static macroscopic parameter inherently fails to capture the dynamic

evolution of internal structures and thus becomes insufficient for explaining the sustained

differences in behavior observed at later times. Indeed, Figure 5(b) demonstrates that the

macroscopic volume fractions across all AR systems eventually converge towards a similarly

low level as dispersion progresses. Therefore, a detailed examination from a mesoscopic

perspective—one that resolves the formation, evolution, and stability of internal structures

such as particle clusters, and their dynamic interaction with the gas phase—is crucial for a

complete understanding of the staged nature of the system’s response and the underlying

mechanisms of cluster-induced resistance.

To characterize these evolving clusters, and link their properties to the observed re-

sistance, we define a cluster as a contiguous region where the local fiber volume fraction,

ϕp (x, t), exceeds a threshold of 0.6ϕ0. This threshold was empirically determined to best cap-

ture coherent, densely-packed regions that visually corresponded to mechanically significant

agglomerations, while filtering out more tenuous, transient fiber groupings. Fibers within

these regions are thus identified as constituting a cluster. Figure 11 visually demonstrates

the morphology and evolution of these defined clusters, highlighted in green, presenting

snapshots for representative AR = 2 and AR = 20 systems at t = 7.8 ms and t = 15 ms.

At t = 7.8 ms, distinct differences in cluster morphology are already apparent. For the AR

= 2 system (Figure 11(a)), rapid dispersal and expansion have led to a significantly reduced

overall cluster presence. The remaining clustered fibers are primarily concentrated in a band
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FIG. 11. Snapshots of the evolution of the fiber clusters (highlighted in green) for the low-AR

(AR = 2) and high-AR (AR=20) systems at t = 7.8 ms and t = 15 ms. The fibers have a bending

modulus of Eb = 5× 108 Pa.

within the curtain’s interior and at the leading edge. Notably, as observed from the overall

dispersal dynamics as show in Figure 3, fibers within these clusters tend to possess high ve-

locities, suggesting strong localized acceleration mechanisms that will be explored further in

the context of pressure gradient analysis. Alternatively, the AR = 20 system (Figure 11(b))

at the same time instance, benefiting from enhanced inter-fiber interlocking, shows that the

vast majority of fibers still participate in forming a large, relatively coherent cluster struc-

ture. These disparities become even more pronounced at t = 15 ms. In the AR = 2 system

(Figure 11(a)), only a few isolated remnants of clustered fibers can be identified, indicating

near-complete fragmentation. Yet, the AR = 20 system (Figure 11(b)) continues to exhibit

substantial, large-scale clusters, particularly at its stabilized leading edge, underscoring the

persistent nature of these structures due to enhanced geometric interlocking.

To quantify these visually observed differences in cluster evolution, two key parameters

are extracted from the identified clusters, with their temporal evolution depicted in Figure

12: the average cluster volume fraction, ϕ̄c, representing the internal packing density of the

clusters, and the cluster volume ratio, η, defined as the ratio of the volume of the fibers

within these identified clusters Vcluster to the total volume of all the fibers in the system

Vtotal: η = Vcluster/Vtotal. Analysis of ϕ̄c in Figure 12(a) reveals that, on average, clusters

formed by higher AR fibers are inherently less dense, reflecting the looser packing achievable

by longer fibers even within these agglomerated structures. This trend is consistent with
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(a) (b)

FIG. 12. Time evolution of the (a) average solid volume fraction in the clusters ϕ̄c and (b) cluster

volume ratio η for the fiber curtains with various fiber aspect ratios AR. The fibers have a bending

modulus of Eb = 5× 108 Pa.

the initial ϕ0. The evolution of η (Figure 12(b)) shows that in the initial stage of dispersal,

nearly all fiber volume across all AR values is contained within a single, large, identifiable

cluster, resulting in η approaching 1. As dispersal progresses, η diminishes for all ARs.

However, a crucial distinction emerges: high-AR systems (e.g., AR = 12 to 20) maintain a

substantially higher η, retaining approximately 40% of their fiber volume within identifiable

clusters at later times, whereas clusters in the AR = 1 system almost completely disintegrate

(η → 0).

The role of these evolving clusters in dictating gas flow resistance is further elucidated

by the pressure gradient (∇p) x-t diagram presented in Figure 13. These pressure gradients

consistently remain negative within the curtain region, reflecting higher upstream pressure

compared to downstream. Moreover, the magnitudes of these adverse pressure gradients are

significantly more pronounced at the locations of dense clusters, as visually corroborated by

comparing with the cluster indicators in Figure 5.

In the initial stages, AR = 1 and 2 systems, with their higher ϕ̄c values, exhibit the largest

pressure gradient magnitudes. This strong initial gradient vigorously drives local particle

motion, leading to the high fiber velocities observed within these early-formed clusters in

low-AR systems. While this might initially contribute to some local cluster compaction, the

sustained intense acceleration in these less interlocked systems ultimately causes leading-edge

particle velocities to significantly exceed the mean. This, as previously discussed, triggers
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AR = 1 AR = 2(a) (b)

(c) AR = 8 AR = 20(d)

FIG. 13. Spatiotemporal x-t diagrams of the pressure gradient in shock-induced fiber curtain

dispersal for the fiber aspect ratios of (a) AR = 1, (b) AR = 2, (c) AR = 8, and (d) AR = 20. The

white dash-lines represent the upstream and downstream air-solid interfaces of the fiber curtains.

The fibers have a bending modulus of Eb = 5× 108 Pa.

interfacial instabilities and accelerates the overall dispersal of the fiber curtain, thereby

diminishing their capacity for long-term gas flow resistance (consistent with the later-stage

transmitted wave behavior in Figures 9(b) and 9(b)). Conversely, in high-AR systems

(e.g., AR = 20), the inherently lower ϕ̄c results in a weaker but notably more persistent

pressure gradient across their stable, interlocked cluster structures. This sustained, albeit

more modest, adverse pressure gradient enables the leading-edge clusters to continuously

impede gas flow over a protracted period. This translates into a more effective sustained

resistance to the flow, particularly at later times, underscoring the importance of long-term

cluster integrity, facilitated by geometric interlocking, for achieving superior overall shock

attenuation in these high-AR configurations.
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t = 0

t = 14 ms

𝑬𝒃 = 𝟓 × 𝟏𝟎𝟒 Pa

t = 9.7 ms

(a)

𝑬𝒃 = 𝟓 × 𝟏𝟎𝟖 Pa(b)

t = 0

t = 14 ms

t = 9.7 ms

FIG. 14. Time-sequential snapshots of the fiber dispersals at the time instants t = 0, 9.7 ms, and

14 ms for the fiber bending moduli of (a) Eb = 5 × 104 Pa and (b) Eb = 5 × 108 Pa. The color

indicates the magnitude of fiber velocity: the velocity increases as the color changes from blue to

red. The fibers have an aspect ratio of AR = 8.

C. Effect of fiber flexibility

Significant fiber bending deformation occurs for the very flexible fibers subject to the

shock impact. Increased fiber flexibility, corresponding to a reduced fiber bending modulus

Eb (defined in Eqs. (3)-(6)), leads to more pronounced fiber bending deformation due to the

air-fiber interaction and fiber-fiber contacts. To explore the effect of fiber flexibility on the

shock-driven fiber dispersion, numerical simulations are performed to analyze the systems

with a fixed fiber aspect ratio of AR = 8 and different bending moduli Eb varying in a wide

range of between 5 × 104 Pa and 5 × 108 Pa, which enables a comprehensive evaluation of

how the fiber bending deformation at various degrees influences air-solid interactions, fiber

dynamics, and air flows.

Figure 14 shows time-sequential snapshots of the fiber dispersals for the highly flexible

fibers with Eb = 5×104 Pa and relatively stiff fibers with Eb = 5×108 Pa. The stiff fibers tend

to maintain a more coherent, albeit expanding, structure (Figure 14(b)), while the highly

flexible fibers (Figure 14(a)) exhibit more irregular and diffusive morphology, in which more
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𝐸𝑏 decreases

FIG. 15. Time evolutions of the (a) normalized curtain length δ/δ0 and (b) average solid volume

fraction ϕ for the fiber curtains with various fiber flexibilities characterized by the fiber bending

modulus Eb. The fibers have an aspect ratio of AR = 8.

pronounced individual fiber deformation is observed. The leading edge of the highly flexible

fiber curtain is characterized by some scattering particle ejections at t = 9.7 and 14 ms,

indicating that the interlocking is weaker and the motion of the fibers is less constrained

as the fibers become more flexible. Comparing Figures 14(a) and 14(b), the leading edge

of the highly flexible fibers travels further than that of the stiff fibers at a specified time

instant (e.g. t = 9.7 ms or 14 ms), resulting a greater expansion of the curtain. The time

evolution of the normalized length of the fiber curtain δ/δ0 for various fiber bending moduli

Eb is shown in Figure 15(a). It is observed that the curtain length generally increases faster

as the fiber flexibility increases (i.e. Eb decreases), and more significant increase in δ/δ0

is obtained by decreasing Eb from 5 × 105 Pa to 5 × 104 Pa. This faster expansion of the

more flexible fiber curtain attributes to the weaker interlocking and the particle ejections

in the leading edge. In addition, as shown in Figure 15(b), the highly flexible fibers with

Eb = 5 × 104 Pa are packed more densely with a large solid volume fraction of ϕ = 0.5 at

the onset of the shock impact (t = 0), due to the significant fiber deformation. Thus, at the

early stage of the dispersion (t < 5 ms), the highly flexible fibers gain larger accelerations

due to the larger air drag forces exerted on the fibers, which are caused by the larger ϕ

(corresponding to the poor permeability of the fiber curtain). This initial large acceleration

also contributes to the fast expansion of the highly flexible fiber curtain.

It is interesting to note that the dispersal behaviors of the highly flexible fibers, as illus-
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(a) (b)

FIG. 16. Time evolutions of the (a) average solid volume fraction in the clusters ϕ̄c and (b) cluster

volume ratio η for the fiber curtains with various fiber bending moduli Eb. In the insert of (a), the

green fibers belong to the clusters. The fibers have an aspect ratio of AR = 8.

trated in Figures 14 and 15, are similar to those of the low-AR fibers, as shown in Figures 3

and 4. Therefore, the effects of increasing fiber flexibility are analogous to those of decreasing

fiber aspect ratio.

The fiber flexibility has an impact on the properties of the clusters which evolve during

the dispersion. As shown in Figure 16(a), the clusters of the more flexible fibers are generally

packed more densely with larger average solid volume fractions ϕ̄c. For the highly flexible

fibers with Eb = 5×104 Pa, the clusters are compacted by the shock with increasing ϕ̄c over

time at the early stage (t < 4 ms), and a large cluster (represented by the green fibers in

the insert in Figure 16(a)) is formed on the leading side of the curtain. The fibers exhibit

significant bending deformation in the densified cluster. After reaching the peak at t = 4

ms, ϕ̄c experiences a sharp decline, which corresponds to the rapid expansion of the clusters

driven by the shock. The cluster volume ratio η, defined as the ratio of the volume of the

fibers in the clusters to the total volume of all the fibers in the system, decreases much faster

with time for Eb = 5× 104 Pa, as shown in Figure 16(b), indicating that the clusters of the

highly flexible fibers, which possess lower shear strengths, have shorter life spans.

Figures 17(a) and 17(b) show the spatiotemporal x-t diagrams of local solid volume

fraction ϕp and air pressure gradient ∇p, respectively, for the highly flexible fibers with

Eb = 5 × 104 Pa, which are similar to the corresponding diagrams for the stiff fibers with

Eb = 5× 108 Pa in terms of the distribution patterns. Nevertheless, the greater peak ϕp is
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FIG. 17. Spatiotemporal x-t diagrams of (a) local solid volume fraction ϕp and (b) air pressure

gradient ∇p for the highly flexible fibers with Eb = 5× 104 Pa under the shock loading. The fibers

have an aspect ratio of AR = 8. The white dash-lines represent the upstream and downstream

air-solid interfaces of the fiber curtains.

obtained for Eb = 5 × 104 Pa compared to Eb = 5 × 108 Pa, consistent with the results in

Figure 16(a). At the early stage (t < 4 ms), due to the formation of the denser clusters with

the highly flexible fibers, the negative air pressure gradients of larger magnitudes are induced

on the leading side of the curtain, and the negative pressure gradients are sufficiently strong

to eject some fibers forward away from the front of the moving curtain (Figure 14(a)).

According to the results in this section, the fiber flexibility has impacts on the packing

density and rate of reduction (quantified by dη/dt) of the clusters, by which the expansion

of the curtain and fiber ejection are influenced.

D. Scaling law for expansion of a dense flexible fiber curtain

Elucidating the dynamic expansion of a dense flexible fiber curtain under the shock wave

impact is vital for applications like shock mitigation and advanced compressible multiphase

flow modeling. Based on the present simulation results, a scaling law for the time-dependent

length of the fiber curtain δ(t)/δ0 is obtained for the fibers with various aspect ratios AR

and flexibility.

Variation in fiber aspect ratio AR naturally induces difference in the initial solid volume

fraction ϕ0, due to distinct shape-dependent packing characteristics. Thus, the scaling law
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should explicitly include ϕ0.

To describe the dynamic expansion of the curtains of spherical particles hit by a shock,

DeMauro et al. [20] derived a scaling correlation of the curtain length of the spherical

particles at various solid volume fractions. The derivation begins from a force balance

equating the curtain’s inertial response to the aerodynamic drag exerted by the shock wave,

ϕ0ρfAδ0
d2x

dt2
=

1

2
CDρind

(
Uind −

dx

dt

)2

A, (21)

where ϕ0ρfAδ0 represents the effective mass of the particle curtain, d2x
dt2

represents the ef-

fective acceleration of the curtain’s center of mass, treated as a bulk object under shock

loading, and the right-hand side is the aerodynamic drag, where CD is the drag coefficient,

ρind the induced gas density, and uind− dx
dt

is the relative velocity between gas and fiber cur-

tains. Assuming early-stage dynamics where dx
dt

≪ Uind, and approximating ρind ≈ ρ1(the

pre-shock ambient gas density), Eq. (21) simplifies to:

ϕ0ρfAδ0
d2x

dt2
≈ 1

2
CDρ1U

2
indA. (22)

The integration of the above equation yields,

x(t) =
1

4
CD

ρ1
ϕ0ρfδ0

(Uindt)
2 . (23)

Assuming the curtain length δ(t) increases linearly with x(t) by a factor of κ,

δ(t) = δ0 + κx(t), (24)

Substituting Eq.(23) into Eq. (24) gives,

δ(t)/δ0 = 1 +
κ

4
CD

ρ1
ϕ0ρf

(
Uindt

δ0

)2

. (25)

As discussed in [20], the drag coefficient CD scales with the solid volume fraction ϕ0 in the

form,

CD ∝ ϕ
3/2
0 / (1− ϕ0)

2 (26)

Substituting Eq. (26) into Eq. (25), a scaling law of the curtain length can be obtained as,

δ (t)

δ0
− 1 ∝

[
ϕ
1/4
0 Uindt

(1− ϕ0) δ0

]2

(27)
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(a) (b)

k=2

FIG. 18. Scaling laws for spreading of flexible fiber curtains with different aspect ratios: (a)

incorporation ϕ0, (b) incorporation ϕ0 and AR. The fibers have a bending modulus of Eb =

5× 108 Pa.

The scaling represented by Eq. (27) works well for the spherical particle curtains with

various solid volume fractions ϕ0 [20]. Nevertheless, as shown in Figure 18(a), the data

deviate more from those of the spherical particles (AR = 1) as the fiber aspect ratio AR

increases. Thus, the fiber elongation should be considered in the scaling law. The particle

aspect ratio AR has an impact on the drag force, and the modified drag coefficient CD is

assumed to follow,

CD ∝ ϕ
3/2
0

(1− ϕ0)
2 · ARm, (28)

where the exponent of m = 1/2 was obtained by best fitting to the simulation data. Conse-

quently, a scaling law can be determined for the fiber curtains considering the effect of the

fiber aspect ratio AR,

δ (t)

δ0
− 1 ∝

[
AR1/4ϕ

1/4

0 Uindt

(1− ϕ0) δ0

]2

. (29)

As shown in Figure 18(b), the data tend to collapse, but certain deviations exist. In the

correlation of Eq. (29), the effect of AR on the drag force is considered, while the impacts

of AR on the fiber-fiber contacts and cluster properties are neglected, which may cause the

data deviations in Figure 18(b).

To assess the influence of fiber flexibility on the dispersal dynamics, the results with

identical fiber aspect ratio of AR = 8 but different fiber flexibilities, characterized by the

fiber bending modulus Eb, are analyzed. As shown in Figure 19(a), the dispersal data of the
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(a) (b)

k=2

(c)

FIG. 19. Effect of fiber flexibility on the scaling correlation of the expansion of the fiber curtains:

(a) scaling with the fiber aspect ratio AR, (b) improved collapse with the effective aspect ratio

ARe, and (c) variation of ARe with fiber bending modulus Eb.

highly flexible fibers with a smaller modulus of Eb = 5.0 × 104 Pa deviate markedly below

the master curve of the more rigid fibers with Eb = 5.0 × 108 Pa, underscoring that the

significant fiber deformation increase the curtain expansion. Under the shock loading, less

interlocking and reduced gas-fiber drag forces are obtained for the more flexible fibers that

experience larger bending deformations.

To account for the effects of the fiber deformation on the packing density, an effective

aspect ratio ARe was introduced by [48]. A gyration tensor S [49] was defined as,

Smn =
1

N

N−1∑
i=0

(rim − rcmm )(rin − rcmn ), (30)

where N was the total number of spherical nodes used to discretize a fiber, vector ri denoted
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the position of the i-th node, and vector rcm was the position of the center of mass of the

fiber. Three eigenvalues of this gyration tensor were determined as λ1, λ2, and λ3, which

followed λ1 ≥ λ2 ≥ λ3. An effective aspect ratio of a fiber ARe could be calculated by

ARe =

√
λ1

max
[
λ3, d2f/12

] , (31)

in which df was the diameter of the fiber and max[−] function returned the larger value

between λ3 and d
2
f/12. According to the previous work [48], the fibers of different flexibilities

but the same effective aspect ratios ARe had almost the same packing density.

In this work, the ensemble-averaged effective aspect ratios ARe are computed for the

dispersal processes with the fibers of various flexibilities. The dependence of ARe on the

fiber bending modulus Eb is shown in Figure 19(c), in which the effective fiber aspect ratio

ARe approaches the nominal or real AR as Eb increases. Using the effective aspect ratio

ARe to replace the real aspect AR in Eq. (29), the modified scaling law is obtained as

δ (t)

δ0
− 1 ∝

[
AR1/4

e ϕ
1/4

0 Uindt

(1− ϕ0) δ0

]2

. (32)

Based on this scaling, as shown in Figure 19(b), the fiber curtain expansion data tend

to collapse for the fibers with various flexibilities and aspect ratios. This unified collapse

highlights the pivotal roles of fiber shape and flexibility in shock-driven spreading dynamics,

and provides a predictive tool for the expansion of the flexible fiber curtains.

V. CONCLUSIONS

An investigation in the shock-induced dispersal of dense flexible fiber curtains is presented

in this study, and the critical roles of fiber aspect ratio AR and flexibility in the granular dis-

persal patterns and shock wave attenuation are elucidated. Based on the three-dimensional

(3D) simulation results using a coupled DEM-CFD approach, we demonstrate that AR fun-

damentally determines the dispersal characteristics. Low-AR fiber systems undergo rapid,

heterogeneous expansion with pronounced particle ejections. In contrast, high-AR systems

leverage the geometric interlocking to form persistent and shear-resistant clusters that ef-

fectively suppress the particle ejections and significantly bolster the shock attenuation over

time.
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The mechanisms underpinning cluster-induced resistance to the shock propagation are

found to stem from a complex interplay between the shear yield strengths and the evolving

solid volume fractions of the clusters. The initial shock impact consolidates the fiber curtain

into a large cluster for all the fiber types. Compared to the high-AR fiber systems, the

low-AR fiber systems exhibit stronger resistance to the shock propagation at the early stage

due to their denser packings with larger solid volume fractions, causing larger magnitudes of

air pressure gradients through the curtain. However, after a period of the wave propagation,

clusters formed by the low-AR fibers rapidly disintegrate and simultaneously strong fiber

ejections occur, leading to weakened resistance to the shock waves at the late stage. In

contrast, high-AR systems exhibit weaker resistance to the shock at the early stage due

to their lower solid volume fractions. The clusters of the high-AR fibers have larger shear

strengths due to the geometric interlocking, and therefore they can survive and maintain

strong resistance to the shock for longer time duration. In conclusion, the low-AR and

high-AR fibers have different two-stage characteristics of the shock resistance, due to the

differences in the cluster properties for the two types of fibers.

Fiber flexibility, quantified by the fiber bending modulus Eb, determines the fiber bending

deformation due to air-fiber interaction and fiber-fiber contacts. Compared to the stiff

fibers, at the early stage, more flexible fibers with smaller Eb are compacted to form denser

clusters with larger fiber bending deformation, and these denser clusters are reduced faster,

manifested by the sharp decrease in cluster volume ratio η, due to the weaker interlocking

and lower shear strengths of the highly flexible fiber clusters. Attributed to the easy escape of

the individual fibers from the clusters, more rapid expansion with significant fiber ejections

on the leading side is obtained for the highly flexible fiber curtains. It is noted that the effects

of increasing fiber flexibility on the fiber dispersals are analogous to those of decreasing fiber

aspect ratio, as both lead to weakened clusters.

Finally, a generalized scaling law is proposed to describe the dynamic evolution of the

length of the fiber curtains. The fiber aspect ratio AR should be included in the scaling

correlation to account for the effect of fiber elongation on the air drag. Further, an effective

fiber aspect ratioARe, which decreases as the fiber experiences larger bending deformation, is

introduced to replace the real fiber aspect ratio AR to account for the effect of fiber flexibility

on the air-fiber interaction. The present findings provide some updated understandings

of dispersal mechanics of the flexible fibers impacted by an air shock, which give some
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implications for the use of fibrous materials to achieve the shock attenuation.
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